\(\int (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)} \, dx\) [740]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 435 \[ \int (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)} \, dx=-\frac {(a-b) b \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (2 a+b) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}-\frac {3 a \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}+\frac {b \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

b*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2)/d-(a-b)*b*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+
b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a
*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d*x+c)^(1/2)+(2*a+b)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1
/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+s
ec(d*x+c))/(a-b))^(1/2)/d/sec(d*x+c)^(1/2)-3*a*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*
x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec
(d*x+c))/(a-b))^(1/2)/d/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 435, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {4307, 2900, 3132, 2888, 3077, 2895, 3073} \[ \int (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)} \, dx=\frac {\sqrt {a+b} (2 a+b) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d \sqrt {\sec (c+d x)}}-\frac {b (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d \sqrt {\sec (c+d x)}}-\frac {3 a \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d \sqrt {\sec (c+d x)}}+\frac {b \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}{d} \]

[In]

Int[(a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]],x]

[Out]

-(((a - b)*b*Sqrt[a + b]*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b
]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(
a - b)])/(a*d*Sqrt[Sec[c + d*x]])) + (Sqrt[a + b]*(2*a + b)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[S
qrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a
+ b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(d*Sqrt[Sec[c + d*x]]) - (3*a*Sqrt[a + b]*Sqrt[Cos[c + d*x]]*Csc[c
 + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a
- b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(d*Sqrt[Sec[c + d*x]]) + (b*
Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2900

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Dist[1/(d*(m + n)
), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a^2*c*d*(m + n) + b*d*(b*c*(m - 1) + a*d
*n) + (a*d*(2*b*c + a*d)*(m + n) - b*d*(a*c - b*d*(m + n - 1)))*Sin[e + f*x] + b*d*(b*c*n + a*d*(2*m + n - 1))
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c
^2 - d^2, 0] && LtQ[0, m, 2] && LtQ[-1, n, 2] && NeQ[m + n, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3132

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 4307

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+b \cos (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {b \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a b}{2}+a^2 \cos (c+d x)+\frac {3}{2} a b \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {b \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a b}{2}+a^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+\frac {1}{2} \left (3 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = -\frac {3 a \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}+\frac {b \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d}-\frac {1}{2} \left (a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+\frac {1}{2} \left (a (2 a+b) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx \\ & = -\frac {(a-b) b \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (2 a+b) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}-\frac {3 a \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}+\frac {b \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 9.10 (sec) , antiderivative size = 322, normalized size of antiderivative = 0.74 \[ \int (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (2 b (a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+4 a (a-2 b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+12 a b \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+b \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{d \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]],x]

[Out]

(Cos[(c + d*x)/2]^2*Sqrt[Sec[c + d*x]]*(2*b*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c +
d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 4*a*(a - 2*b)*Sqrt
[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan
[(c + d*x)/2]], (-a + b)/(a + b)] + 12*a*b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a
 + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + b*Cos[c + d*x]*(a + b*
Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(d*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1361\) vs. \(2(395)=790\).

Time = 8.99 (sec) , antiderivative size = 1362, normalized size of antiderivative = 3.13

method result size
default \(\text {Expression too large to display}\) \(1362\)

[In]

int((a+cos(d*x+c)*b)^(3/2)*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/d*(EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^2+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+
c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)^2+6*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))
^(1/2))*a*b*cos(d*x+c)^2+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*Ell
ipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^2-4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/
(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^2
+2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))
/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)+12*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/
2))*a*b*cos(d*x+c)+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF
(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)-8*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(
1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)+((a+cos(d
*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*a*b+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(c
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2+6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*
x+c))/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a*b+2*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2
-4*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*a*b-b^2*cos(d*x+c)^2*sin(d*x+c)-a*b*cos(d*x+c)*sin(d*x+c))*sec(d*x+c)^(1/2)/(1+cos(
d*x+c))/(a+cos(d*x+c)*b)^(1/2)

Fricas [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c)), x)

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(3/2)*sec(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)} \, dx=\int \sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

[In]

int((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2),x)

[Out]

int((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2), x)